葛立恒数二吧
关注: 762 贴子: 64,713

“葛立恒数吧”第二分部,讨论大数

  • 目录:
  • 其他生活话题
  • 2
    Ocf是迭代不动点的,那么如果我们迭代容许点,它可以超过反射吗? 比如说ψ(α)就是Ω 然后就有。ψ(α+1)=Ωω ψ(α2)=Ω_2? ψ(α^2)=I? SSO=ψ(ε(α+1))?
    jdihdib 11:18
  • 41
    把ω扔进FGH得到放大可数序数的效果,那么Ω呢? 由这里11,12,13楼继续。 目前抡西到{1;2,ω}。 可以拿来当做Catching函数的抡西。
    anhongyi51 09:50
  • 0
    这个数的位数的位数的位数的位数…刚好等于1 记上面的位数的个数为a,那么a的位数的位数的位数的位数…刚好等于1 记上面的位数的个数为aa,那么aa的位数的位数的位数的位数…刚好等于1 记上面的位数的个数为aaa,那么aaa的位数的位数的位数的位数…刚好等于1 … 记一共有b个a,才能使最后一个次的数值刚好等于1,那么b的位数的位数的位数… 记上面的位数的个数为ba,那么ba的位数的位数的位数的位数…“刚好等于1”←后面省掉 记上面的位数的
    _ae9EWZ1 09:23
  • 7
    p=(0) p+p=(0)(0) p(p)=(0)(1) p(p+p)=(0)(1)(1) p(p(p))=(0)(1)(2) p(pp1)=(0)(1,1) p(pp1+p)=(0)(1,1)(1) p(pp1+pp1)=(0)(1,1)(1,1) p(pp1(p))=(0)(1,1)(2) p(pp1(pp1))=(0)(1,1)(2,1) p(pp1(ppp1))=(0)(1,1)(2,2) p(p1)=(0)(1,1,1) p(p1+p) p(p1+pp1) p(p1+p1) p(p1(p)) p(p1(pp1)) p(p1(p1)) p(p1(pp2)) p(p1(pp2+pp1)) p(p1(pp2+p1)) p(p1(pp2+p1(pp2))) p(p1(pp2+pp2)) p(p1(pp2(p))) p(p1(pp2(pp1))) p(p1(pp2(pp2))) p(p1(pp2(ppp2))) p(p1(p2))
    Beria 5-24
  • 10
    楼下说事,本帖持续更新,极限不知道
  • 21
    High lift urgent sequence(高提升急数列)记号 规则1:#可为任意一段数列,或为空,极限表达式为1(1)(2)(3)(4)…… (#,1)=(#)+1 末项向前找比自身小的父项,父项前为好部G,父项到末项前一项记坏部B 展开为(G,B,B,B,……B,B,B) x(1)=x,x+1,x+2,x+3,…… 若末项为x(n),先看(n)旁的x,x找父项,如同正常展开样,为(G,B,B,B,……,B,B),例1(1),2(2),2(2)=1(1),2(2),1(1),2(2),1(1),2(2),…… 若x(n)找的父项为x-1(n-1),则为x-1(n-1),x(n-1),x+1(n-1),…… x(n)(n)……(n)记x(n)ⁿ x(n)ⁿ(n)=x(n)ⁿ(n-1)x+1(n+1)ⁿ(n)x+2(
    古者 5-23
  • 6
    p1(p1)=Ψ(1) (0)(1) p1(p1+p1)=Ψ(2) (0)(1)(1) p1(p1(p1))=Ψ(ω) (0)(1)(2) p1(p2)=Ψ(Ω) (0,0)(1,1) p1(p2+p1)=Ψ(Ω+1) (0,0)(1,1)(1) p1(p2+p1(p2))=Ψ(Ω+Ψ(Ω)) (0,0)(1,1)(1)(2,1) p1(p2+p1(p2+p1))=Ψ(Ω+ψ(Ω+1)) (0,0)(1,1)(1)(2,1)(2) p1(p2+p1(p2+p1+p1))=ψ(Ω+ψ(Ω+2)) (0,0)(1,1)(1)(2,1)(2)(3) p1(p2+p1(p2+p1(p2)))=ψ(Ω+ψ(Ω+ψ(Ω))) (0,0)(1,1)(1)(2,1)(2)(3,1) p1(p2+p2)=Ψ(Ω2) (0,0)(1,1)(1,1) p1(p2+p2+p2)=Ψ(Ω3) (0,0)(1,1)(1,1)(1,1) p1(p2(p2))=Ψ(Ω^2) (0,0)(1,1)(2,1) p1(p2(p2+p1))=Ψ(Ω^2*ω) (0,0)(1,1)(2,1)(2) p1(p2(p2+p2))=Ψ(Ω^3) (0,0)(1,1)(2,1) p1(p2(p2(p2)))=Ψ(Ω^Ω) (0,0)(1,1)(2,1)
    jdihdib 5-23
  • 59
    p1(p1)=Ψ(1) p1(p1+p1)=Ψ(2) p1(p1(p1))=Ψ(ω) p1(p2)=Ψ(Ω) p1(p2+p1)=Ψ(Ω+1) p1(p2+p1(p2))=Ψ(Ω+Ψ(Ω)) p1(p2+p1(p2+p1))=Ψ(Ω2) p1(p2+p1(p2+p1+p1))=Ψ(Ω3) p1(p2+p1(p2+p1(p2)))=Ψ(Ω*Ψ(Ω)) p1(p2+p2)=Ψ(Ω^2) p1(p2+p2+p2)=Ψ(Ω^3) p1(p2(p2))=Ψ(Ω^Ω) p1(p2(p2+p1))=Ψ(Ω^(Ω+1)) p1(p2(p2+p2))=Ψ(Ω^(Ω2)) p1(p2(p2(p2)))=Ψ(Ω^(Ω^2)) p1(p2(p2(p2+p1)))=Ψ(Ω^(Ω^2*2)) p1(p2(p2(p2+p2)))=Ψ(Ω^(Ω^3)) p1(p2(p2(p2(p2))))=Ψ(Ω^(Ω^Ω)) p1(p2(p3))=Ψ(Ω_2) p1(p2(p3)+p1)=Ψ(Ω_2+1) p1(p2(p3)+p2)=Ψ(Ω_2+Ω) p1(p2(p3)+p2(p2))=Ψ(Ω_2+Ω^2) p1(p2(p3)+p2(p3))=Ψ(Ω_2+Ψ1(Ω_2)) p1(p2(p3+p1))=Ψ(
  • 4
    我们有一种很弱的不可达基数,根据容许基数的反义词,所以我们叫做不容许基数,不容许基数仅仅在连续统假设不成立时才会出现。 容许基数的意思就是非递归点,常常是奇异基数,所以我们取反面的不容许基数,就是可以递归得出,但是却是正则基数。 如果一个基数α,满足α是弱不可达基数,可是任意一个比α小的基数(大于等于阿列夫零)通过幂运算,均比这个α都大,我们称α是不容许基数。当连续统不成立时,在2^阿列夫零以下的不容许基数
    ychfugug 5-22
  • 10
    I和m的关系是不是相当于m和k的关系还是说不一样?
  • 6
  • 1
    《沙粒、围棋和无穷》《大数入门》
    jdihdib 5-19
  • 3
    (0)(1,1,1,……)=(0)(1,(2)) (0)(1,(2))(2,2,2,……)=(0)(1,(2))(2,(3)) (0)(1,(2),1)=(0)(1,(2))(2,(3))(3,(4))…… (0)(1,(2),1,(2))=(0)(1,(2),1,1,1,……) (0)(1,(2),2)=(0)(1,(2),1,(2),1,(2),……) (0)(1,(2),2) (0)(1,(2),2,2,2,……)=(0)(1,(2),2,(3)) (0)(1,(2),2,(3),3,(4)) (0)(1,(2,0))=(0)(1,(2),2,(3),3,(4),……) (0)(1,(2,1))=α→(0)(1,(2,α)) (0)(1,(2,(3))) (0)(1,,2)=(0)(1,(2,(3,(……)))) (0)(1,,2,2,,3)=(0)(1,,2,2,(3,(4,(……)))) (0)(1,,2,,2)=(0)(1,,2,2,,3,3,,4,……) (0)(1,,2,3)=(0)(1,,2,,2,,2,,2,,……) (0)(1,,2,,3)=(0)(1,,2,3,(4,,5,6,(7,,8,9,(10,……)))) (0)(1,,,2)=(0)(1,,2,,
    anhongyi51 5-19
  • 24
    e+1=e-1,(e-1,(e-1……e次e为任意合法序列1=11,1=2规则e任意合法序列e中包含的Ф-n=n步e=n,n,n……ne=n,(n,n,n……n),n,n……ne,1-1=e,0Ф任意合法序列上的序数Ф-1则在e中增加(Ф-1,Ф-1,Ф-1……n步)求将非全零序列减至全零序列需多少步
  • 13
    前面和Prss一样 在末尾的a,(1,∅)可以展开为a,a+1,a+2...... 1,(1,∅)=1,2,3,...... 1,(1,∅),2=1,(1,∅),1,(1,∅),1,(1,∅)...... 1,(1,∅),(1,∅)=1,(1,∅),2,(1,∅),3,(1,∅)...... 1,(1,∅),(2,∅)=1,(1,∅),(1,∅),(1,∅)...... (a,∅)这样的项可以看成是第二行的,展开的规则对于处在同一行的连续的项成立 1,(1,∅),(1,∅,∅)=1,(1,∅),(2,∅),(3,∅)...... 1,(2,∅)=1,(1,∅),(1,∅,∅),(1,∅,∅,∅)...... 1,(2,∅),(1,∅)=1,(2,∅),2,(1,∅),(2,∅ ∅),(2,∅),(1,∅,∅),(2,∅,∅,∅),(2,∅,∅)...... 1,(2,∅),(1,∅),(2,∅)=1,(2,∅),
    古者 5-18
  • 27
    (0)(1,1)=ε₀=ψ(Ω) (0)(1,1)(2,1)=ζ₀=ψ(Ω²)??? (0)(1,1)(2,1)(3,1)=Γ₀=ψ(Ω^Ω) (0)(1,1)(2,1)(3,1)(4,1)=LVO=ψ(Ω^Ω^Ω) …(可以看到(0)(1,1)(2,1)很奇怪) 到了ψ(Ω₂)之后ψ(Ω₂²)也会这么奇怪吗?
    xyl 5-18
  • 33
    (0)=p1 (0)(1)=p1(p1) (0)(1)(1)=p1(p1+p1) (0)(1)(2)=p1(p1(p1)) (0)(1)(2)(1)=p1(p1(p1)+p1) (0)(1)(2)(1)(2)=p1(p1(p1)+p1(p1)) (0)(1)(2)(2)=p1(p1(p1+p1)) (0)(1)(2)(3)=p1(p1(p1(p1))) (0,0)(1,1)=p1(p2) (0,0)(1,1)(1)=p1(p2+p1) (0,0)(1,1)(1)(2)=p1(p2+p1(p1)) (0,0)(1,1)(1)(2)(3)=p1(p2+p1(p1(p1))) (0,0)(1,1)(1)(2,1)=p1(p2+p1(p2)) (0,0)(1,1)(1)(2,1)(2)(3,1)=p1(p2+p1(p2+p1(p2))) (0,0)(1,1)(1,1)=p1(p2+p2) (0,0)(1,1)(1,1)(1,1)=p1(p2+p2+p2) (0,0)(1,1)(2)=p1(p2(p1)) (0,0)(1,1)(2)(3)=p1(p2(p1(p1))) (0,0)(1,1)(2)(3,1)=p1(p2(p1(p2))) (0,0)(1,1)(2)(3,1)(4)(5,1)=p1(p2(p1(p2(p1(p2))))) (0,0)(1,1)(2,1)=p1(p2(p2)) (0
    jdihdib 5-18
  • 3
    (2)=1 #(2)=(2)+1 (#(1))=(#)*ω 若这时n为1,则(#(2))ⁿ=(#)*ω,反之则不是 ((2))=(2)² (……(x)……)=(x)ⁿ (#(1)ⁿ)ⁿ=(#α→(1(2α)ⁿ)ⁿ⁻¹) (#(2)ⁿ)ⁿ=(#α→(2α)ⁿ⁻¹)ⁿ (2)ⁿ=α→(2α)ⁿ⁻¹ 极限形式为α→((2))ʸ,这里的角标y为α
    古者 5-18
  • 22
    我们可以知道,原本的Ω原来指ω₁,在OCF里面,因为折叠可数序数不需要ω₁这么大的序数,用ω₁CK就行了,由ω₁CK大于所有的可计算可递归函数的增长率,所以引入H₁(Ω),就是用来迭代非递归序数,因为所有的递归函数都已经被Ω以下的增长层次所折叠,自然Ω增长率表示非递归函数,如果H₁()在ω处需要对角化的话。那么H₁(Ω)自然就是Ω₂,H₁(Ω,1)=Ω₃,H₁(Ω,n)=Ω_(2+n)。所以Ω级增长率以上代表的是非递归分析。 以下是我扽西出来的结果。
    ychfugug 5-16
  • 7
    必须良定义且可计算,不许使用自然语言构造。 强度至少BHO,最多MHO
  • 11
    请出点题目,还不是太熟练
    jdihdib 5-17
  • 17
    (0)=1 (0)(0)=2 (0)(1)=ω (0)(1)(0)(1)=ω2 (0)(1)(1)=ω^2 (0)(1)(2)=ω^ω (0)(1)(2)(1)(2)=ω^ω2 (0)(1,1)=ε0
    ychfugug 5-16
  • 33
    这个分析是我和wwwwzzzzzzc一起写的,目前分析到(0)(1,1,1,1)(2,2,1)(3,2,1)(1,1,1,1) 1(0) 2(0)(0) 3(0)(0)(0) ω = FTO(0)(1) ω+1(0)(1)(0) ω+2(0)(1)(0)(0) ω2(0)(1)(0)(1) ω2+1(0)(1)(0)(1)(0) ω3(0)(1)(0)(1)(0)(1) ω^2(0)(1)(1) ω^2+1(0)(1)(1)(0) ω^2+ω(0)(1)(1)(0)(1) ω^2+ω+1(0)(1)(1)(0)(1)(0) ω^2+ω2(0)(1)(1)(0)(1)(0)(1) ω^2*2(0)(1)(1)(0)(1)(1) ω^2*3(0)(1)(1)(0)(1)(1)(0)(1)(1) ω^3(0)(1)(1)(1) ω^4(0)(1)(1)(1)(1) ω^ω(0)(1)(2) ω^ω+1(0)(1)(2)(0) ω^ω*2(0)(1)(2)(0)(1)(2) ω^(ω+1)(0)(1)(2)(1) ω^(ω+2)(0)(1)(2)(1)(1) ω^(ω2)(0)(1)(2)(1)(2) ω^(ω3)(0)(1)(2)(1)(2)(1)(2)
    anhongyi51 5-16
  • 11
    @jdihdib 我感觉极限可能LSO
    anhongyi51 5-16
  • 128
    单行与PrSS没什么差异 (0)=1 (0)(0)=2 (0)(0)(0)=3 (0)(1)=(0)(0)(0)(0)… =ω (0)(1)(0)=ω+1 (0)(1)(0)(0)=ω+2 (0)(1)(0)(1)=(0)(1)(0)(0)(0)… =ω+ω=ω2 (0)(1)(0)(1)(0)=ω2+1 (0)(1)(0)(1)(0)(1)=(0)(1)(0)(1)(0)(0)… =ω2+ω=ω3 (0)(1)(0)(1)(0)(1)(0)(1)=ω4 (0)(1)(0)(1)(0)(1)(0)(1)(0)(1)=ω5 (0)(1)(1)=(0)(1)(0)(1)(0)(1)…=ω×ω=ω² (0)(1)(1)(0)=ω²+1 (0)(1)(1)(0)(1)=ω²+ω (0)(1)(1)(0)(1)(0)(1)=ω²+ω2 (0)(1)(1)(0)(1)(1)=(0)(1)(1)(0)(1)(0)(1)(0)(1)… =ω²2 (0)(1)(1)(0)(1)(1)(0)(1)=ω²2+ω (0)(1)(1)(0)(1)(1)(0)(1)(0)(1)=ω²2+ω2 (0)(1)(1)(0)(1)(1)(0)(1)(1)=ω²3 (0)(1)(1)(0)(1)(1
    anhongyi51 5-16
  • 21
    听说是可以不用序数坍塌函数的,求链接或者大致解释
    ChaseLight 5-15
  • 4
    φ(e+1)=e*ω φ(Ω)=φ(φ(φ(…φ(1)…))) φ(Ω2)=φ(Ω+φ(Ω+φ(Ω……) φ(Ω3)=φ(Ω2+φ(Ω2+φ(Ω2……) φ(Ω^2)=φ(Ω*φ(Ω*φ(Ω……) φ(Ω^2+Ω)=φ(Ω^2+φ(Ω^2+φ(Ω^2……) φ(Ω^2+Ω^2)=φ(Ω^2+Ω*φ(Ω^2+Ω*φ(Ω^2……) φ(Ω^3)=φ(Ω^2+Ω^2+Ω^2……) φ(Ω^Ω)=φ(Ω^φ(Ω^φ(Ω……) φ(Ω^Ω+Ω^2)=φ(Ω^Ω+Ω*φ(Ω^Ω……) φ(Ω^Ω+Ω^Ω)=φ(Ω^Ω+Ω^φ(Ω^Ω+Ω^φ(……) φ(Ω^Ω^2)=φ(Ω^Ω+Ω^Ω+Ω^Ω……) φ(Ω^Ω^2+Ω^Ω^2)=φ(Ω^Ω^2+Ω^Ω*φ(Ω^Ω^2+Ω^Ω*φ(……) φ(Ω^Ω^3)=φ(Ω^Ω^2+Ω^Ω^2+……) φ(Ω^Ω^Ω)=φ(Ω^Ω^φ(Ω^Ω^φ(Ω^Ω……) φ(Ω
  • 5
    Destroyer Matrix System(简称DMS) 极限表达式:(0,0,0,…,0,0,0)(0,0,0,…,0,0,(1,1)) 相关概念:DMS是一个矩阵系统,矩阵的每一项都是0或一个有序数对,有序数对的第一个数代表这一项的数值,第二个数代表这一项的父项与这一项的距离;0没有父项,所以数值为0的项没有第二个数;矩阵的第一列必须全部为0 定义: 1.空矩阵(Ø)对应序数0 2.如果这个矩阵的最后一列全部为0,那么它对应的序数等于去掉最后一列之后,剩余部分对应的序数+1 3.对于任意一个合法的最后
  • 1
    ≈10^10^120?
    ychfugug 5-15
  • 38
    首先,ω→ω→ω=φ(ω,0)。 按照原本运算的话,ω→ω→ω+1=φ(ω+1,0)。 有个运算方式α是极限序数时:a→b→α=a→b→α[lbk]b[rbk] 如果按照这个方式计算,则ω→ω→ω+1=φ(1,0,0),我们就称为ω→ω→ω+1的一级对角化结果是φ(1,0,0)。 接着按照这个规则,比如有ω→ω→ω^ω=SVO。 接着,ω→ω→ω→2我们又可看作另一层级的ω+1增长率,所以我们就称作ω→ω→ω+1的用二级对角化计算的结果就是BO。 类似的,我们继续在应用上述的高德纳运算规则,有:ω→ω
    ychfugug 5-15
  • 18
    不想写形式定义 众所周知,e0=w^^w,而^^的增长率是4,因此,e0可以称作“4作用于w”,简写为“4-w” 然后5-w=z0,w-w=p(Ω^w)......(默认使用+1模式) 直到w-w-w-w-......达到BO,这是a->a-w,是SGH和FGH的第一次Catching 然后(a->a-w+1)-w,(a->a-w+1)-w-w…… 和稳定一样,这一切的极限是a+1->a-w,是SGH和FGH的第二次Catching 然后就有a->a+2-w,a->a*2-w,a->a^2-w,...... 如果HypCos对CatchingFunction的分析没问题的话,a->a^^a-w = a->(4-a)-w是SSO 然后有(5-a)、w-a、BO-a、a-a…
    ychfugug 5-15
  • 51
    因为希腊字母难以打出,我用p代替ψ,W代替Ω,w代替ω (0) 1 (0)(0) 2 (0)(1) w (0)(1)(0) w+1 (0)(1)(0)(1) w*2 (0)(1)(0)(1)(0)(1) w*3 (0)(1)(1) w^2 (0)(1)(1)(0)(1)(1) w^2*2 (0)(1)(1)(1) w^3 (0)(1)(1)(1)(1) w^4 (0)(1)(2) w^w (0)(1)(2)(1) w^(w+1) (0)(1)(2)(1)(2) w^(w*2) (0)(1)(2)(2) w^w^2 (0)(1)(2)(2)(2) w^w^3 (0)(1)(2)(3) w^w^w (0)(1)(2)(3)(4) w^w^w^w (0)(1,1) p(W) (0)(1,1)(0)(1,1) p(W)*2 (0)(1,1)(1) p(W+1) (0)(1,1)(1)(2) p(W+w) (0)(1,1)(1)(2)(3) p(W+w^w) (0)(1,1)(1)(2,1) p(W+p(W)) (0)(1,1)(1)(2,1)(1)(2,1) p(W+p(W)*2) (0)(1,1)(1)(2,1)(2) p(W+p(W+1)) (0)(1,1)(1)(2,1)(2)(3) p(W+p
    jdihdib 5-14
  • 20
    n(0)n=n+1 n(1)n=n(0)n(0)……n n(n)n=n(n-1)n(n-1)……n=n(0,1)n n(0,2)n=n(0,1)n(0,1)n……n n(0,n)n=n(0,0,1)n n(0,0,n)n=n(0,0,0,1)n n(0,0,0……n)n=n(1→ω)n n(1→ω+1)n n(1→1→ω)n n(1→1→1→……)n=n(2→ω)n n(2→2→2→……)n=n(3→ω)n n(ω→ω)n=n(n→ω)n n(ω+1→ω)n=n(ω→ω→ω→……)n n(ω→ω)→ω)n n(ω→ω)→ω)→ω)……)n=n(1→ω→1)n n(1→ω+1→1)n n(1→(1→ω→1)→1)n n(1→(1→(1→…ω…→1)→1)→1)n=n(1→ω→2)n n(1→(1→(1→…ω…→2)→2)→2)n=n(1→ω→3)n n(1→(1→(1→…ω…→ω)→ω)→ω)n= n(1→ω→ω+1
  • 9
    对于任何的一个叙述直接把他的所有w变成3,然后把它展开之后,再把所有w变成三。 或者说曲奇基本类的第三项,再去取基本的第三项,直到它变成一个后继叙述,然后把它后记的部分拿走,再去基本里的第三项,以此类推,直到最后变成零,把所有拿走的普通数字全部加起来,得到一个结果。 那么使用这种方式,所有的叙述都可以转化为一个常数。那么 再定义一个函数,这个函数中输入一个常数,就可以把这个常数变成另一个叙述 这个叙述是所
  • 0
    1=1 1,1=2 1,1,1=3 1,2=ω 1,2,1=ω+1 1,2,1,1=ω+2 1,2,1,1,2=ω2 1,2,1,1,2,1,1,2=ω3 1,2,1,2=ω^2 1,2,1,2,1,2=ω^3 1,2,2=ω^ω 1,2,2,1,1,2,2=ω^ω*2 1,2,2,1,2=ω^(ω+1) 1,2,2,1,2,1,2=ω^(ω+2) 1,2,2,1,2,1,2,2=ω^(ω2) 1,2,2,1,2,1,2,2,1,2,1,2,2=ω^(ω3) 1,2,2,1,2,2=ω^(ω^2) 1,2,2,2=ω^(ω^ω) 1,2,2,2,2=ω^(ω^(ω^ω)) 1,2,3=Ψ(Ω) 1,2,3,1,1,2,3=Ψ(Ω)2 1,2,3,1,2=Ψ(Ω+1) 1,2,3,1,2,1,2,3=Ψ(Ω+Ψ(Ω)) 1,2,3,1,2,2=Ψ(Ω+Ψ(Ω+1)) 1,2,3,1,2,2,1,2,3=Ψ(Ω+Ψ(Ω+Ψ(Ω))) 1,2,3,1,2,3=Ψ(Ω2) 1,2,3,2=Ψ(Ωω) 1,2,3,2,1,2,1,2,3=Ψ(Ωω+Ψ(Ω)) 1,2,3,2,1,2,1,2,3,2=Ψ(Ωω+Ψ(Ωω)) 1,2,3,2,1,2,2=Ψ(Ωω+
    古者 5-12
  • 1
    画大饼画的越大越好。
    jdihdib 5-12
  • 4
    大赛的说明,每个人在这个帖子里面发一些增长率非常离谱的表示法。 大于e0 比如说e0^(w+2)就算比较离谱 然后我会给每一个表示法打分。 这个的得分和之前那个比赛的得分之间不能互通。 因为用的是不同的评分标准。
    ApemanV 4-28
  • 64
    垃圾<萌新<新人<菜鸟<低<中<高<小佬<中佬<大佬<奆佬<奆奆奆......(ω个)佬 格式(只填括号):
    anhongyi51 5-12
  • 5
    要不要来测试一下,相信大家都能及格,再看看有没有挂科的选手 答案写在纸上拍图片也行,答在评论区也行。
    jdihdib 5-12
  • 25
    就连SGH和FGH都能catch 那来个没有层结构的OCF ψ(0)=1 ψ(1)=2 ψ(ψ(0))=ψ(1)=2 ψ(Ω)=ω ψ(Ω+1)=ψ(Ω)+1=ω+1 ψ(ψ₁(1))=ψ(Ω+1)=ω+1 ψ(ψ₁(Ω))=ψ(ψ₁(ψ(ψ(ψ(…)))))=ω2 ψ(Ω₂)=ω² ψ(ψ₂(Ω))=ω²+ω ψ(Ω₃)=ω³ ψ(Ω_Ω)=ω^ω ψ(I)=ε₀ ψ(I+1)=ε₀+1 ψ(Ω_(I+1))=ε₀*ω ψ(I₂)=ε₁ ψ(I(1,0))=ζ₀ … 这样下去这个超弱OCF和原OCF能catch吗 (我就不信这么弱还能catch了)
    ychfugug 5-12
  • 37
    BOCF的Ψ(Ω_3+Ψ_1(Ω_3+Ψ_1(Ω_3+……)))=Ψ(Ω_3+Ω_2)?
    yonhen88 5-11
  • 0
    我个人倾向于psi_M(M)=I的奇怪表示法,看着比较整洁;这时候psi(M)=psi(1st OFP)。 原因是M折叠正则基数。
  • 5
    记号形式为(a1,a2,a3,a4,……) 可空,每项最低为1 ()=0 (#,1)=(#)+1 未项k向前找比自身小的坏根m,k-m-1=n,好部G为(a1,a2,a3,……,am-1),坏部B为(am,am+1,am+2,……,ak-1) 若n=1,则为(G,B,B*2,B*3,B*4,……) 若n>1,则为(G,B+n,B+n+n,B+n+n+n,……) (1):若1,1,1,……的情况,一般这种结构都合为1,2,例1,2,1,1,1,……,当前面已经有1,2这种结构时,相同的1,1,……结果并不能直接合为1,2,而是1,1,2,也就是1,2,1,1,1,……=1,2,1,1,2,有1,1,1,……的情况肯定有2,2,……,3,3,……等的情况,也是先
    古者 5-10
  • 9
    Ψ(Ω_2) Ψ(Ω_2+Ψ(Ω_2+Ψ(Ω_2……=Ψ(Ω_2+Ω) Ψ(Ω_2+Ω*Ψ(Ω_2+Ω*Ψ(Ω_2+Ω……= Ψ(Ω_2+Ω^2), Ψ(Ω_2+Ω^Ω) Ψ(Ω_2+Ω_2),Ψ(Ω_2*Ψ(Ω_2*Ψ(Ω_2……= Ψ(Ω_2^ω,Ψ(Ω_2^Ψ(Ω_2^Ψ(Ω_2……= Ψ(Ω_3),Ψ(Ω_4),Ψ(Ω_ω) Ψ(Ω_ω+1),Ψ(Ω_Ψ(Ω_Ψ(Ω_……=Ψ(Ω_Ω) 再往下写不出了,OCF是这样写下去的吗。
    ychfugug 5-8

  • 发贴红色标题
  • 显示红名
  • 签到六倍经验

赠送补签卡1张,获得[经验书购买权]

扫二维码下载贴吧客户端

下载贴吧APP
看高清直播、视频!

本吧信息 查看详情>>

小吧:小吧主共8

会员: 大数学家

目录: 其他生活话题